Mikhail Kostin

Beam Injection Dump

Fermilab

October 6, 2004

Model

- The system is azimuthally symmetric for simplicity.
- 1 m or 0.3 m in the transverse direction provide an order of magnitude dose reduction. Beam dumps for 20 kW and 40 kW are almost same.
- Beam intensity:

1 GeV =
$$1.6 \times 10^{-10}$$
 J; 8 GeV = 12.8×10^{-10} J
N_p= $40,000$ W / (12.8×10^{-10}) = 3.125×10^{13} proton/sec

- Fermilab soil is wet dirt with $\rho = 2.24 \text{ g/cm}^3$
- Central part is a block of steel, some part can be replaced with concrete.
- 1 m pass around the dump (for firemen)
- 1'-thick concrete wall

Design Criteria

- Promt Dose on surface (occupied areas)
 - \leq 0.05 mrem/hr for normal operation
 - ≤ 1.00 mrem/hr for accident

Design driven by normal operation, not accident.

- Hands-on maintenance dose ≤ 100 mrem/hr=1 mSv/hr
- Sump water activation $\leq 2000 \text{ star/cm}^3/\text{sec.}$ Water activation limit for MIPP (E907) is $5.96 \times 10^{10} \text{ star/year/cm}^3$. That corresponds to $0.9536 \times 10^{-10} \text{ star/cm}^3/\text{1}\text{proton}$ for the 'standard Fermilab year' (2 $\times 10^7 \text{ sec}$). Star density for hadrons with E $\geq 50 \text{ MeV}$.

Fermilab

Figure 2: Prompt Dose.

One can not simulate fast many meters of soil (too long). Need an estimate. For 5 m of soil and concrete one expects 10⁵ prompt dose rate reduction.

Figure 3: Residual Dose.

Figure 4: Star density.

Star Density_{max} = $(8.114 \pm 3.734) \times 10^{-12}$

Estimate for Dump Transverse Size

'Minimal Dump':

- \bullet steel 3.5 m \times 3.5 m driven by star density, not by residual dose
- 8 m of soil, less if the area fenced as "Radiation Area".